Fat body cells and calcium phosphate spherules induce ice nucleation in the freeze-tolerant larvae of the gall fly Eurosta solidaginis (Diptera, Tephritidae)

نویسندگان

  • Mugnano
  • Lee
  • Taylor
چکیده

During the autumn, the third-instar larvae of the gall fly Eurosta solidaginis acquire freeze tolerance and their crystallization temperatures increase into the -8 to -10 °C range. Despite conflicting reports, efficient endogenous ice nucleators have not been identified in this freeze-tolerant insect. We found large crystalloid spheres within the Malpighian tubules of overwintering larvae. Energy-dispersive X-ray microanalysis and infrared spectroscopy indicated that the spherules were a hydrate of tribasic calcium phosphate. To test for ice-nucleating activity, we placed the calcium phosphate spherules in 10 µl of Schneider's insect medium and cooled them in a refrigerated bath. The addition of spherules increased the crystallization temperature of Schneider's medium by approximately 8 C, from -18.4±0.8 °C to -10.1±0.9 °C (mean ± s.e.m., N=20). Ice-nucleating activity (-10.9±0.9 °C) was also demonstrated in fat body cells suspended in 10 µl of Schneider's medium. Both calcium phosphate spherules and fat body cells have ice-nucleating activity sufficiently high to explain whole-body crystallization temperatures. Furthermore, other crystalloid deposits, commonly found in diapausing or overwintering insects, also exhibited significant ice-nucleating activity. These endogenous crystalloid deposits represent a new class of heterogeneous ice nucleators that potentially regulate supercooling and promote freeze tolerance in E. solidaginis and possibly in other overwintering insects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survival of Intracellular Freezitg, Lipid Coalescence and Osmotic Fragility in Fat Body Cells of the Frceze-tolerant Gall Fly Eurosta solidaginis

Atthough it is generally believed that under natural conditionso freeze-tolerant organisms can survive only if ice formation is restricted to the extracellular space, in 1959 R. W. Salt reported that fat body cefls of the freeze-tolerant gall fly, Eurosta solidaginis (Diptera: Tephritidae)' survive intracellular freezing. Using cryomicroscopy, intratellular freezing was observed at -4.6*0.1oC f...

متن کامل

Intracellular freezing, viability, and composition of fat body cells from freeze-intolerant larvae of Sarcophaga crassipalpis.

Although it is often assumed that survival of freezing requires that ice formation must be restricted to extracellular compartments, fat body cells from freeze-tolerant larvae of the gall fly, Eurosta solidaginis (Diptera, Tephritidae) survive intracellular freezing. Furthermore, these cells are highly susceptible to inoculative freezing by external ice, undergo extensive lipid coalescence upon...

متن کامل

Modeling seasonal changes in intracellular freeze-tolerance of fat body cells of the gall fly Eurosta solidaginis (Diptera, Tephritidae)

Although seasonal changes in the freeze-tolerance of third-instar larvae of Eurosta solidaginis have been well documented for the whole organism, the nature of this cold-hardiness at the cellular level has not been examined. Seasonal changes in the survival of fat body cells from E. solidaginis larvae were assessed using fluorescent vital dyes after freezing at -10, -25 or -80 °C for 24 h b...

متن کامل

Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening.

Overwintering insects may experience extreme cold and desiccation stress. Both freezing and desiccation require cells to tolerate osmotic challenge as solutes become concentrated in the hemolymph. Not surprisingly, physiological responses to low temperature and desiccation share common features and may confer cross-tolerance against these stresses. Freeze-tolerant larvae of the goldenrod gall f...

متن کامل

Energy and water conservation in frozen vs. supercooled larvae of the goldenrod gall fly, Eurosta solidaginis (fitch) (Diptera: Tephritidae).

Insects that tolerate severe cold during winter may either supercool or tolerate ice forming within the tissues of the body. To compare the relative advantages of freezing and supercooling, we measured rates of CO(2) production and water loss in frozen and supercooled goldenrod gall fly larvae (Eurosta solidaginis). As an important first step, we measured the time required for ice content and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 199 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1996